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Abstract 

This paper studies Artin’s braid monoids using combinatorial methods. More precisely, we 
investigate the linear ordering defined by Dehomoy. Laver has proved that the restriction of 
this ordering to positive braids is a wellordering. In order to study this order, we develop a 
natural wellordering < on the free monoid on infinitely many generators by representing words 
as trees. Our construction leads to a (new) normal form for (positive) braids. Our main result 
is that the restriction of our order << to the normal braid words coincides with the restriction of 
Dehomoy’s ordering to positive braids. Our method gives an alternative proof of Laver’s result 
using purely combinatorial arguments and gives the order type, namely wow. @ 1997 Elsevier 
Science B.V. 

1991 Math. Subj. Class.: 68CO5, 20F36, 20FlO 

0. Introduction 

The n strand braid group, traditionally denoted as B,, is introduced as the abstract 

group with n - 1 generators 01,. . . , on-l subject 

{ 

~i~i+l~i = ~i+l~,~i+l 

CiOj = OjOi for Ii - iI 1. 2. 

We know (see for instance [l]) that B, is the 
braids in the intuitive sense, the product being 

to the relations 

(1) 

group of isotopy classes of n strand 
the concatenation of the strands, the 

generator Ci corresponding to the elementary crossing of the strands i and i + 1. 
Dehornoy has constructed in [3] a linear order on the braids. This order < is char- 

acterized by the fact that a braid j3 verifies /I > 1 if and only if there exists a decom- 
position of B of the form 

P = POQiPloi.. . aiPk, 
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where /?a, /Ii,. . . , /lk admit decompositions where only oi+ l,Oi+2,. . . (and their inverses) 

appear. 

Using arguments of distributive algebra, Laver has shown in [7] that the restriction 

of the order < to the submonoid Bz is a wellordering. This is an application of his 

result that the order < extends the partial order defined in [4] using Higman’s theorem 

of [6]. 

In this paper we shall describe the properties of the order <, give a direct char- 

acterization of the wellordering <I‘ Bz and compute the associated ordinal, which is 
W”fl-Z. 

Let Z,* be the free monoid on the alphabet of letters { 1,2,. . . , n - 1). Under the 

coding 4 that maps every letter i to the corresponding generator ci, every positive 

braid is an equivalence class on C,* relative to the congruence E generated by the 

braid relations. 

Definition (Special relation). A binary relation a on .Zi is special if it is compatible 

with the congruence E-, antisymmetric, transitive, compatible with left translations (i.e., 

A a B implies CA a C.B) and, moreover, satisfies the following condition (a): 

A.Baa...b holds for a 5 b,A in {a+ l,a+2 ,..., b}*,B in {1,2 ,..., b- l}* 

It is clear that any special relation a on Cx induces a strict order on Bz that extends 

the prefix ordering (A a A.B always holds), that E a 1 a 2 a 3 . . . a (n - 1) holds and 

that ai a d’ holds if and only if i < j does. 

Using the terminology of the special relations, the above-mentioned results can be 

stated as 

Proposition 1 (Dehornoy [3]). For every integer n, there exists a special relation on 

c;. 

Proposition 2 (Laver [7]). For every integer n, if a is the special relation on 1: 

whose existence is asserted above, then a extends the subword ordering, and therefore 

a induces a wellordering on B,f (by Higman’s theorem of [6]). 

These results are established using properties of distributive algebra (the study of the 

operations that satisfy the left self-distributivity identity). Our main result here is the 

following refinement of Proposition 2, that we shall prove using purely combinatorial 

methods. 

Proposition 3. For every integer n, there exists at most one special relation on 

C,*. Such 

of type cow 

;_2relation extends the subword ordering, and it induces a wellordering 

on B,f. 

The main idea of this work is to associate a tree structure with every word, and 

to define a linear ordering < of words in terms of the associated trees (actually, a 

lexicographic ordering of the trees). The key result is that the braid tl precedes the 
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braid fi with respect to the order < if and only if u < u holds, where u is the 

<-minimal representative of a and v is the <-minimal representative of /?. So, if the 

words that are <-minimal in their class are called normal (there is exactly one normal 

word for every braid), then 01 < fi holds if and only if the normal decomposition of 

c( precedes the normal decomposition of /I in the order <: there is an isomorphism 

between < and the restriction of < to normal words. Since the relation < on normal 

words of Ci is a wellordering of type oP-*, it is easy to conclude. The main result 

above, that we call coincidence (between < and <), is proved by induction along the 

wellordering <. 

1. A wellordering on the free monoids 

The empty word of C,* is denoted by E. Single letters of the alphabet are denoted by 

a, 6, c, d. And arbitrary words (including the empty word and letters) are denoted by 

A, B, C, D. For any two letters a, b, let us denote by wU,b the set of words formed with 

the letters between a and b that end with the letter b. For instance, the word 5.3.4.3 

belongs to %‘& for any a 2 5. 
We are going to construct an isomorphism between C,* and a family Ya of trees of 

height n. A tree of & is presented as a finite set of lists of integers, its addresses. An 

address describes the path from the root to a node of the tree. 

Definition (Tree). An address is a finite sequence of positive integers. The empty 

address is denoted by A. The addresses are written typically as u, v, w, x, y. z. A tree 
A of height n is a set of addresses of the form 

where n > 1, k 2 1 and Ak, . . . ,Az,A, trees of height n - 1. The unique tree of height 

1 is {A}. For every address w in A, the degree of w in A is the largest integer i such 

that the address wi is in A. The set of all the trees of height n is written &. The 

addresses of length n - 1 in a tree A of & are the leaves of A. Trees are written 

typically A, B, C,D and they admit a geometrical representation associated with the 

prefix ordering of the addresses. 

Example. The set of addresses 

is a tree of 94. This tree is represented by Fig. 1. 

The root has degree 3. The eight leaves of this tree are 

311,221,211,131,122,121,112,111. 
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Fig. 1 

1231221 

Fig. 2. 

We associate with every tree a unique word. The construction of this word uses a 

colouring of each node of the tree by a list of letters. 

Definition (Domain and word). Let A be a tree of Yn. Let w be an address in 

A. The domain of w in A is a sequence of consecutive letters. The domain of A is 

(n - l,..., 2,1) and if the domain of an address x is (ci, . . . , cl ) then the domain of 

the address xk is (~~-1,. . . , ~2, cl ) if k is odd and (~2, cs,. . . ,ci) if k is even. Let xk be 

a leaf in A. The word of xk in A is the unique letter of the domain of the address x 

except for the rightmost leaf l”-’ of which the word is empty. The word of w in A 

is the word formed by the concatenation of the words of all the leaves under the 

address w. The word of the tree A is the word of its root. 

In the figures of trees, we shall use the notation (a,b) to stand for the domain with 

sequence of consecutive letters from a to b. 

Example. The address 1 has domain (2,l) and its word is 1.2.2.1 in Fig. 2. The word 

of this tree is 1.2.3.1.2.2.1. 

We have constructed for every tree a word associated with it. Conversely, for every 

word A there is one and only one tree such that the word of this tree is A. 

Lemma 4 (Representation). The correspondence between the words in C,* and the 

trees in F* is a bijection. 
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Proof. Induction on the length of the word A. The tree associated with the empty word 

of Cz is a single branch of height n. Considering the unique tree associated with a 

word A, for any letter c there is one and only one way to add a branch on the left of 

this tree such that the word of the leaf of this new branch is c. This branch must be 

added under the lowest inner node on the left of the tree whose domain contains the 

letter c. 0 

To construct the tree of a given word, we start with a single branch and successively 

add on the left the letters of the word, with the above rule that a new letter is connected 

to the lowest possible node that accepts it in the sense that its domain contains the 

letter. 

Example. The tree of Y5 associated with the word 1.3.2.2.1.2 of Zt is constructed 

in Fig. 3. 

Definition (Before). Denote by C the lexicographic order on the addresses. The rela- 

tions 123 C 211 and 121 C 122 hold. The tree A is before the tree B if the list of the 

leaves of A is less than the list of leaves of B in the lexicographic order according to 

C. The word A is before the word B, written A < B, if the tree A is before the tree B. 

i 

(4,1) 

(3.1) 

(2,1) 

(1) 

322 12 1 322 12 

Fig. 3. 
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rii L?l 
211 121 111 211 131 121 111 

3 2 3 12 

fl 
311 211 111 

1 3 

Fig. 4 

Geometrically, a tree is before another if and only if the first one is “thinner” than the 

second one at the root or their subtrees are ordered lexicographically from left to right. 

Example. The word 3.2 is before the word 3.1.2, which is before 1.3. (see Fig. 4). 

Proposition 5 (Wellordering). Let n be an integer greater than 2. 

(9 The order << on Cc is a wellordering of type cowne2. 
(ii) The immediate successor of a word A in the order << is the word A.1. 

(iii) The order << is compatible with left translations. 

(iv) The order << extends the subword order. 

Proof. 
(iii) 

Points (i) and (ii) are obvious. 

It is sufficient to show that, for any words A,B and any letter c, the relation 

A < B * CA < c.B holds. 

Let (xl , . . . ,x1) be the list of leaves of A. Let (y,, . . . , ~1) be the list of leaves of B. 
Let x1+1 be the new leaf of CA and y,+l be the new leaf of c.B. 

Suppose XI = y,,,. By definition the nodes on the the left part of A and B are equal 

two by two and by construction xl+1 = y,,,+l holds. 

Suppose XI C y,,,. The address XI begins with wi and ym begins with wj where 

i < j. If c is not in the domain of w, then the addresses x/+1 and ym+l are equal by 

construction. Else, if c is in the domain of w but not in the domain of wi, then the 

address x1+1 is of the form w(i + l)lk and x/+1 C ym C y,+l holds. Else, if c is in 

the domain of wi, then the address xl+1 begins with wi and xl+1 C y,,, C y,,,+l hold. 

In all cases, the C-lexicographical order is preserved. The converse is obvious since 

< is a linear order. 

(iv) First, it is obvious by definition that < extends the suffix order, i.e., A < CA. 
Then, by induction on the integer k, the relation ak . . .a1 < Ck.ak . . . Cl.al.Co holds for 

all words Ck,..., CO since < is transitive and is compatible with left translations. 0 

Observe that the order < is not compatible with right translations as 1 < 2 and 

1.2 > 2.2 hold (see Fig. 5). 
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Fig. 5. 

2. Application to positive braids 

Any positive braid in B, can be viewed as an equivalence class of words of Cz. In 

this way, one can define a normal form for any positive braid. 

Definition (NormaZ form). For any word A, let us denote by IlAll the <-minimal 

element of the class of A. Say that A is normaI if A is [[All. 

Then, the order < restricted to normal form words induces a wellordering on positive 

braids. In the sequel, we will see that this induced wellordering preserves all properties 

of the Proposition 5 (wellordering). 

Definition (Word ZI). Let A be a word. Write A+ for the image of A by the morphism 

mapping every letter a to the corresponding letter (a + 1) and by A- the image (if it 

exists) under the inverse morphism. Let a, b be two letters with a 5 b. The word ZIa,b 

is the word of %& 

a.(a+ l)...b. 

The word nb,a is the word of %$a 

b.(b- l)...a. 

The relation a.(a + l).a E (a + l).a.(a + 

n a,afl .a = a+.&,.+, , 
n a+da + 1) = (a + ~)-.K+I,~, 

a property that is generalized in the 

1) then implies the relations 

Lemma 6 (Shifting). Let a, b be two letters and C be a word. 

(i) For a -c b and C in {a ,..., b - l}*, n,b.c E c+.n,b holds. 

(ii) For a > b and C in {a ,..., b + l}*, nn,b.c E c-.fla,b holds. 
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Proof. It is sufficient to verify the property when C is a letter c. 

(i) For a 5 c < b, we obtain 

&,b.c = &,c-_l.c.(c + 1).&+2&c 

= && .c.(c + l).c.&+z,b 

= &,c-l.(C + l).c.(c + 1).&+2,b 

= (c + 1>.n,,,-,.C.(C + 1).IIc+2,b 

= ‘+.&b. 

(ii) For a > c > b, the computation is symmetrical. 0 

We are now going to characterize a set of words called reducible. Such a word 

is never normal because one can always construct another word that is equivalent 

and strictly less (w. r. to <). In order to introduce this notion, we need to define a 

convenient decomposition of words. This decomposition depends on the geometry of 

left part of the associated trees. 

Definition (Decomposition). Denote by r the partial mapping that maps any address 

of the form x(i + 2)lj to the address x(i + 1). Let a.A be a word with leftmost leaf 

w. The decomposition of the word a.A is, if it makes sense, the sequence of words 

(a, B, C,D), where B is the word of the address r(w), C is the word of the address 

r’(w) and D is the word that gives A = B.C.D. 

Since the morphism r is not defined on “right branch addresses” of the form lj, 

some words admit no decomposition. At this point, one can separate the words in two 

types. 

Definition (Type). A word A has type 1 if one of the following holds: 

(i) A has the form 1’ with 0 5 i, 

(ii) A begins with at least twice the same letter (A has the form a’.B), 

(iii) A has the form IZa,b.B with B in the submonoid { 1,. . . , b - l}*. 

The word A has type 2 otherwise. 

By complementation, one obtains: 

Lemma 7 (Type 2 decomposition). Let a.A be a word of type 2. Then the decompo- 

sition (a, B, C, D) of a.A exists and one of the jbllowing holds: 

(i) The word B is in %&I& with b > a and C is in wb-I,,-j with j 2 0. 

(ii) The word B is in ?!&l,b with a > b and C is in %$+l,,+j with j 2 0. 

Definition (Reducibility). A word A’.a.A is reducible if a.A has type 2 and for its 

decomposition (a, B, C, D) one of the following holds: 

(i) The word B is in wa+i,b with b > a and B does not contain the letter (a + 1). 

(ii) The word B has the form fla+i,b with b > a, and the word C has the form 

C,.Cz, where Ci is in %$b-_l and C,, does not contain the letter (b - 1). 



S. Burckell Journal of Pure and Applied Algebra 120 (1997) I-1 7 9 

Fig. 6. 

(iii) The word B is in WO-r,b with a > b, and B does not contain the letter (a - 1). 

(iv) The word B has the form Ila-t,b with a > b, and the word C has the form 

Ct.Cz where Cl is in ?#&+I and CZ does not contain the letter (b + 1) (Fig. 6). 

The geometrical characterization of reducible words enables us to prove that those 

words cannot be <-minimal in their respective classes. 

Lemma 8 (Reduction). For any reducible word A, there exists a word T(A) in the 

class of A that satis$es T(A) << A. So, reducible words cannot be normal. 

Proof. Let A.a.B.C.D be a reducible word where a.B.C.D is the smallest reducible 

suffix. Let us consider the cases of reducibility. 

(i) The word B is in W&t,b with b > a and does not contain the letter (a + 1). Let 

T(A.a.B.C.D) be the word 

A.B.a.C.D. 

For the equivalence, as B does not contain the letter (a + l), it commutes with the 

letter a. For the order, the left branch of letter Q is inserted on the left of the tree of 

C and as C is in %&,,a_j with j > 0, the tree of C accepts this letter a (Fig. 7). 

(ii) The word B has the form na+t,b with b > a, and the word C has the form Ct.C2, 

where Ct is in %&__l and C2 does not contain the letter (b - 1). Let T(A.aJ3.C.D) 

be the word 

C,+.&+,,b_l.&b.D. 

For the equivalence, by Lemma 6 (shifting), one has 

a.na+l,b.cl = na,b.cl 

= C;.n,b. 
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Fig. 7. 

Fig. 8. 

As the word CZ does not contain the letter (b - l), it commutes with the letter b. For 

the order, the tree of CF is smaller than the tree of a.II,+l,b. Moreover, as the word 

D is in ~~_-jfl,b+k with k > 0, the tree of D accepts the letter b. 

The two other cases are symmetric (Fig. 8). 0 

We have proved that any reducible word A cannot be normal since one can con- 

struct the associated word T(A). As the sequence of words A,T(A),r’(A),. . , is by 

construction decreasing and as < is a wellordering, there exists a finite integer k such 

that rk(A) is irreducible. Let us denote by T*(A) this last iterated word. We put 

T*(A) = A when A is irreducible. In the sequel, we will see that T*(A) = llAl[ always 

holds and that every irreducible word is normal. So, the iteration of r on any word 

gives a computation of its normal form. 

For the sequel we need to construct “large” irreducible words. Let us show that any 

irreducible word can be completed on the left in a way that preserves irreducibility. 
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Lemma 9 (Irreducible completion). Zf a word a.A is irreducible then the words a’.A, 

(a + l).a2.A, (a - l).a2.A are irreducible too. 

Proof. The word a2.A has type 1. So, it cannot be reducible. The decomposition 

of the word (a + l).a2.A has the form ((a + 1),a2.B,C,D). The word a2.B con- 

tains the letter a. Moreover, the word a2.B cannot be a ZZa,b since it contains two 

letters a. 

The argument is the same for the word (a - l).a2.A. Cl 

We have constructed several tools on words according to the order < that allow us 

to define the link between special relations and this order <. 

Definition (Complete words). Assume that a is a special relation on Cz. A word B of 

C,* is a-complete if the relation A << B implies A a B for every word A. 

The key result of this paper will be that irreducibility, completeness and normality 

are equivalent notions. We begin with 

Proposition 10 (Complete is irreducible). Assume that a is a special relation on Cz. 

Then every a-complete word is necessarily irreducible. 

Proof. For a reducible word A, the word T(A) is before A and is equivalent to A. 

Then the word T(A).1 is the immediate successor of T(A) for <, and it cannot be 

equal to A (different lengths). We thus have 

T(A).1 < A. 

By the property (i), we have E a 1. The compatibility with left translations implies 

A a A.l, i.e., A a T(A).1 since A and T(A) are equivalent. Hence, T(A).1 < A and 

A a T(A).1 hold. By antisymmetry of a, the word A cannot be a-complete. 0 

So, reducible words cannot be a-complete. For the converse, we prove by induction 

on the wellordering << that any irreducible word B is a-complete since the relation 

A a B holds for every word A before B. We need several definitions and lemmas. We 

first consider the case when A and B begin with the same letter. 

Definition (Twins). Let a.A be a word. A twin of a.A is any word before a.A that 

begins with letter a as well. 

So, any twin of a word a.A has the form a.B. The compatibility with left translations 

implies B < A. 

Lemma 11 (Twins). Let a be a special relation on Cz. Assume that the word a.A is 

an irreducible word and that every irreducible word before a.A is a-complete. Then 

a.B a a.A holds for any twin a.B of a.A. 
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Proof. The word A is irreducible and before a.A. By hypothesis, the word A is a- 

complete. As a.B is a twin of a.A, B < A holds. That implies B a A. The compatibility 

with left translations implies a.B a a.A. 0 

We consider type 1 irreducible words and prove the inductive step for their com- 

pleteness. 

Lemma 12 (Type 1). Let a be a special relation on Ci. Assume that the word a.A 

is an irreducible word of type 1 und that every irreducible word before a.A is a- 

complete. Then the word a.A is also a-complete. 

Proof. Let a.A be an irreducible word of type 1. Let A’ be a word before the word 

a.A. If A’ is a twin of a.A then Lemma 11 (twins) implies A’ a a.A. Assume that A’ 

does not begin with a. 

If the word a.A has the form l’, then A’ is necessarily of the form 1’ with i <j. 

That implies A’ a a.A. 

If the word a.A has the form a’.B, the word A’ is necessarily before the word a.B 

since a.B < A’ << a2.B implies that A’ is a twin of a.A. The word a.B is a-complete 

by hypothesis. Thus A’ a a.B and B a a.B hold. The compatibility with left translations 

implies a.B a a2.B. By transitivity, A’ a a2.B holds. 

If the word a.A has the form Ila,+ B with a < b and B in the submonoid {b - 

1 ,..., l}* then the word A’ is necessarily of the form Al.A2 with Al in {a + 1,. . . , b}* 

and Ax in {b- l,..., l}*. The property (4) implies A’ a na,b. The compatibility with 

prefix order implies fla,b a na,b.B. By transitivity, A’ a a.A holds. 0 

In order to prove the inductive step for type 2 irreducible words, we need another 

notion. We will show by induction on the order << that for any irreducible word B of 

type 2, the relation Ak a B holds for special words Ak that we call the “k-neighbours” 

of B. 

Definition (Neighbour). Let a.A be a word of type 1. Let x(i + 2)lj+’ be the leftmost 

leaf of A. For every integer k, a word B is k-neighbour of a.A if the leftmost leaf of 

B begins with x(i + 1)k (see Fig. 9). 

By definition of the order < we have immediately 

Lemma 13 (Neighbour before). Every k-neighbour of aA is before a.A and before 

every (k + 1)-neighbour of a.A as well. 

With this notion of neighbour, we can characterize all words that lie before a word 

of type 2. 

Lemma 14 (Predecessors). Let a.A be a type 2 word of C,*. Every word A’ before a.A 

that is not a twin of a.A lies before any k-neighhour of a.A for k large enough. 
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x(it2) 

x(it2)1..1 
x(itl)ky 

Fig. 9. 

Proof. The leftmost leaf of the word a.A has the form x(i + 2)ljf’. Let w be the 

leftmost leaf of A’. Then the address w is necessarily at most equal to x(i + 2)li+‘. 

Three cases are possible: 

(i) For w C x(i + 1 ), A’ is before every k-neighbour of a.A; 
(ii) For w of the form x(i+ l)my, A’ is before every k-neighbour of a.A for k > m; 

(iii) For w = x(i + 2)lj+‘, the word A’ begins with a and is a twin of a.A. So, we 

have the result. 0 

Lemma 15 (Nice neighbour). Assume that a.A is an irreducible word of type 2 and 
that every irreducible word before a.A is a-complete. Then, for every integer k, there 
exists a word Ak that is a 2k-neighbour of a.A, is irreducible and verifies Ak a a.A. 

Proof. Assume that the decomposition of the word a.A has the form (a, B, C, D) with 

B in %&,b with b > a and C in #&l,a_j with j 2 0. 

Let us put 

B,,=(b-1)2.. . (a + 2)2.(a + 1)2.(a + 2)2.. (b - 1)2.b2, 

C, = a2.(a + 1)2 . . . (b - 2)2.(b - 1)2, 

C, = (b - 2)2.(b - 3)2 . . . (a - j + l)2.(a - j)2. 

Let us show that Bk.Cl .C2. D serves as the required Ak. 
The word Bi.C, .C2.D is a 2k-neighbour of a.A since Bi contains 2k alternations of 

letters b and (a + 1). By definition, the word A ends with (a - j).D. By completion, 

the word ClC2.D is irreducible since Cl.Cz is a sequence of patterns c2, (c+ 1).c2 and 

(c - l).c? The word b.C, .C2.D is irreducible as well since the word Cl .C2 contains 

the letter (b - 1) and is different from nb_I,=_j. The word BiC1.Cz.D is irreducible. 

As a.A is irreducible, the word B necessarily contains the letter (a + 1) and one of the 

two following cases occurs: 

(i) The word flat,,6 is a strict subword of B. 
(ii) The word nn+l,b iS B and the word C is not in “#&1~&__2+__i. 



14 S. Burckell Journal of Pure and Applied Algebra 120 (1997) 1-I 7 

In both cases, for every word CO in %$a,b_i, Ll,+&o.C1 .Cz.D << B.C.D holds. 

Indeed, for case (i), Da+i,b.C*.D < B.C.D holds for every word C* in %&_l,a-j, and 

CO.C~.CZ is such a word. For case (ii), CO.CI.CZ.D < C.D holds. And compatibility 

with left translations implies B.Co.Cl .C,. D < B.C. D. 

The relations Da+i,b.Co.C1 .C,. D < B.C.D = A and our hypothesis that A is a- 

complete since A is irreducible and before a.A, imply D,+l,b.CO.C1.Cz.D a A. Then 

compatibility with left translations gives a.D,+l,b.C@CI.C2.D a a.A. But &I,+,,, is 

Da,b and a.D,+l,& z Co+.a.Da+l,b holds. So, applying the previous relation with 

CO = (Bk)- gives B$~.II,+~,~.CI.C~.D a a.A. We have to eliminate the subword 

a.ZI,+r,, to obtain the result. The word Ci has the form a.Cii with Cii = a.(a + 

1)2 . ..(b - 2)2.(b - 1)2. Since Ci is not in ^IY^a+l,b__l, the word Da+i,b.Ci.C2.D is ir- 

reducible. This word is before a.A. So, it is a-complete by hypothesis and c11C2.D a 
n a+l,&1 C2.D holds. The compatibility with left translations implies Bi.a.C11 C2.D a 

Bi.a.fl,+1,&1.C2,D, i.e., Bt.C, .C2.D a Bk.a.lI,+l,b.CI .Cz.D. Transitivity implies 

BkC1C2.D a a.A. 

So, the word B~.CI.C~.D is an irreducible 2k-neighbour of a.A that verifies Bt.Ci.C2, 

D a a.A. The other decomposition case is analogous. 0 

We can now prove the inductive step for type 2 irreducible words. 

Lemma 16 (Type 2). Let a be a special relation on C,*. Assume that the word a.A 

is an irreducible word of type 2 and that every irreducible word before a.A is a- 

complete. Then the word a.A is also a-complete. 

Proof. Assume that A’ is before a.A. If A’ is a twin of a.A, then Lemma 11 (twins) 

implies A’ a a.A. If A’ is not a twin of a.A, then by Lemma 14 (predecessors), A’ is 

before every 2k-neighbour of a.A for k large enough. By Lemma 15 (nice neighbour), 

there exists a 2k-neighbour Ak of a.A which is irreducible and which verifies Ak a a.A. 

As this word Ak is before a.A, it is a-complete by hypothesis. As A’ is before this 

word Ak, we have A’ a Ak and by transitivity, we obtain A’ a a.A. 0 

The conjunction of Lemma 12 (type 1) and Lemma 16 (type 2) gives by induction 

the 

Proposition 17 (Irreducible is complete). Assume that a is a special relation on Cz. 

Then every irreducible word is necessarily a-complete. 

The equivalence between irreducibility and completeness will be the main tool for 

the following theorem. 

Theorem 18 (Coincidence). Assume that a is a special relation on C,*. Then 

(i) a coincides with << on normal words; 

(ii) a is the unique special relation on Zz; 

(iii) IIA(( < JJBI( implies (jC.AJJ < I\C.BJ(; 
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(iv) Every equivalence class contains exactly one irreducible word, namely its <<- 

minimal element. For every word A of Cx, T*(A) = jlA[l holds; 

(v) Q induces a wellordering of type We”-’ on BT; 

(vi) a extends the subword ordering. 

Proof. (i) Assume IlAll < IIBII. S ince llBl/ is irreducible, by Proposition 17, B is a- 
complete. That implies llA[l a IIBII, i.e., A a B by compatibility of a with braid relations. 

Let us show conversely that A a B implies llA[l < IIBII. Assume l/All # IIBII, then 

l[Bll < [[All implies B a A, and llAl[ = llB[l implies A 3 B. In both cases, antisymmetry 

of a excludes A a B. 

(ii) This is obvious from (i). 

(iii) By (i), l[All << llB]l implies A a B. The compatibility with left translations 

implies C.A a C.B. By (i), we obtain IlC.All < IlC.BII. 

(iv) There cannot exist two distinct equivalent irreducible words A and B. Actually, 

if we have A < B (resp. B < A) then, by (i), we have A a B (resp. B a A) and the 

antisymmetry of a excludes A E B. As every normal word is irreducible, T*(A) = llAl/ 

holds for every A. 

(v) From (i), the type of a is the type of < restricted to the set of normal words 

of C,*. Let us call perfect a word in which the degree of every address (except leaves) 

is at least 2. It is obvious that perfect words are irreducible and therefore normal and 

that the restriction of the order < to perfect words has maximal type c#-*, since one 

can consider perfect trees that are as big as we want under any address. 

(vi) Since a is compatible with left translations, it is sufficient to verify that a 
extends the suffix order. From (i), it is sufficient to verify llAl[ < Ila.All for every 

word A and every letter a. The proof uses induction on the wellordering <. For A 

empty, this is clear from (4). Consider a nonempty word A. Assume that, for every 

word A’ before A and for every letter a, IIA’II < Ila.A’)I holds. We show the relation 

l/All < Ila.All for every letter a. Assume that the word a.llAll is irreducible. By point 

(iv), we have r*(a.llAll) = Ila.AII = a.ljAll and we obtain llAl/ < Ila.A)I. Assume that 

the word a.llAll IS reducible. We study every possible case. 

Case 1: The decomposition of the word a.JIA(I is (a, B, C,D) and B does not contain 

the letters (a + 1) and (a - 1). 

As the word C.D is before I/All, it is before A as well. By hypothesis, we have 

IlC.Dll < jla.C.DII. By point (iii), IIB.C.DII < IIB.a.C.DII holds. As a.B = B.a implies 

I(B.a.C.DIJ = (la.B.C.DII, we have 

IIB.C.DII < Ila.B.C.DI(. 

Case 2: The decomposition of the word a.IIAll is (a,II,+t,b,Ci.C2,D) with Ci in 

w=,b-_l and C2 in ?&__2,a_j. As the word A is normal, necessarily the word Ci is not 

in Va+i,b_i. It thus contains a letter a and it is therefore of the form Cii.a.Ci2 with 

Cii not containing the letter a (i.e., belonging to {a + 1,. . . ,b - 2, b - l}*) and Cl2 in 

%&-_l. As the word Ci2C2.D is before C.D, by compatibility with left translations, 

the word fla+z,b. C12.G.D is before IZa+z,b.C.D and hence before [[All and before A. 
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By hypothesis, we have 

From (iii), we have 

Ilc,‘,@ + l).u.na+2,b.c12.c2.DI/ << Ilci:.(~ + i).~.n,+l,b.c1~.c~.Dll. 

As Cl1 is in {a+ l,..., b - 2, b - I}*, by Lemma 6 (shifting) we have 

c;.(ff + 1).ff.na+2,b.c12.c2.D = C&(U + i).na+2,b_~.c12.c2.D 

= C~.nu+,,b.a.C,2.C2.D 

= &+l,b. Cl 1 .a.C12.&.D 
E B.C.D. 

c; .(a + 1 ).a.na+l,b .c12.c2.D = c;.(U + i).na,b.c12.c2.D 

E c; .na&.U.c12.c2.D 

= &&cl, .a.C12G.D 
E a.B.C.D. 

Finally, we have 

IIB.C.DIj << Ilu.B.C.DII. 

The other decomposition case is analogous. Cl 

Our combinatorial characterization of the wellordering on positive braids proves its 

uniqueness, but not its existence, which remains dependent on Dehornoy’s construction. 

However, the theorem of coincidence (18) asserts that the only possible special relation 

on Zz is the restriction of our ordering < to normal words. So, a direct proof of the 

latter relation being a special relation would be sufficient to establish the existence 

result. It happens that several points in the definition of a special relation are satisfied 

by the restriction of < to normal words. Actually, the only presently open question is 

the compatibility with left translations, i.e., the fact that l[All < llBl[ implies I(C.AlI < 

IlC.BIj. We conjecture that a direct combinatorial proof of this latter implication exists. 

Observe that such a proof would make the present construction nicely self-contained, 

and that it would also provide a new proof for the antireflexivity property for left 

distributive systems. 

On the other hand, the notion of a normal form gives a (new) algorithm for the 

word problem on positive braids. To compare two positive braids, one can compute 

their respective images under r*, which we proved are unique. We conjecture that 

this algorithm is quadratic with respect to the length of the braids words. Presently, we 

have completed a proof only for braids of three strands. In this particular case however, 

one even obtains a linear time bound for the computation of the normal form. 
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